Addressing assumptions of natural flow variability for environmental flow regimes

the Tasmanian Environmental Flows Project

Dr Danielle Warfe & Greg McDonald
Water Assessment
Water Resources, DPIW, Tasmania
Environmental flow assessments in Tasmania

Required for Water Management Plans.

Previously based on the amount of water to maintain instream habitat for aquatic flora and fauna

• identifies minimum environmental flows
• used to develop cease-to-take provisions in WMPs.

Recent shift to assessing entire flow regime to determine requirements for entire ecosystem.
An holistic environmental flow framework for Tasmania

• Characterise freshwater-dependent values and develop environmental objectives

• Assess current impacts on hydrology

• Conduct field assessments.

• Identify and define flow events to meet objectives
 – where these are unknown, use the natural flow regime.
Framework assumptions

NATURAL FLOW VARIABILITY ➔ PHYSICAL HETEROGENEITY

⇒ Determine how fine-scale flow variability drives physical structure and biological function of river systems.
Project approach

Stage 1: scoping Jul 06 - Feb 07

Stage 2: catchment studies Feb 07 - Jan 09

Stage 3: developing tools and recommendations Jan 09 - Jul 09
Rivers of low flow variability
Rivers of high flow variability
Stage 1: scoping

- Biophysical characterisation of each catchment
- Natural and current flow regimes characterised
- Development of conceptual models
- 2 sites selected per catchment
- Hydraulic model of each site constructed
Freshwater-dependent values

Conservation of Freshwater Ecosystem Values (CFEV) database.

GIS database of freshwater-dependent features: rivers, wetlands, lakes, estuaries, saltmarshes and karst.

Conservation Management Priority classification

- representativeness (biophysical class)
- distinctiveness (special values)
- naturalness (condition)
- land tenure security
Freshwater-dependent values - Ringarooma

Upper catchment:
- riparian vegetation
- fish assemblages
- threatened and priority flora and fauna

Lower catchment:
- fish assemblages
- threatened and priority flora and fauna
Stage 1: scoping

• Biophysical characterisation of each catchment

• Natural and current flow regimes characterised

• Development of conceptual models

• 2 sites selected per catchment

• Hydraulic model of each site constructed
Catchment hydrology

Natural flows

<table>
<thead>
<tr>
<th></th>
<th>Ringarooma (predictable)</th>
<th>Little Swanport (unpredictable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean annual runoff (m3s$^{-1}$)</td>
<td>4,700</td>
<td>1,000</td>
</tr>
<tr>
<td>Mean daily flow (m3s$^{-1}$)</td>
<td>12.9</td>
<td>2.8</td>
</tr>
<tr>
<td>Mean annual 10% exceedance (m3s$^{-1}$)</td>
<td>31.4</td>
<td>5.0</td>
</tr>
<tr>
<td>Mean annual 90% exceedance (m3s$^{-1}$)</td>
<td>1.8</td>
<td>0.03</td>
</tr>
<tr>
<td>Mean number zero flow days per year</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>Mean annual C_v</td>
<td>1.26</td>
<td>3.72</td>
</tr>
</tbody>
</table>
Stage 1: scoping

- Biophysical characterisation of each catchment
- Natural and current flow regimes characterised
- Development of conceptual models
- 2 sites selected per catchment
- Hydraulic model of each site constructed
Conceptual models

Conceptual models developed to test hypotheses of flow regime variability on various ecosystem components:

- physical heterogeneity
- riparian and aquatic vegetation
- food webs
- ecosystem processes

LOW FLOW VARIABILITY

HIGH FLOW VARIABILITY
Stage 1: scoping

• Biophysical characterisation of each catchment
• Natural and current flow regimes characterised
• Development of conceptual models
• 2 sites selected per catchment
• Hydraulic model of each site constructed
Stage 1: scoping

- Biophysical characterisation of each catchment
- Natural and current flow regimes characterised
- Development of conceptual models
- 2 sites selected per catchment
- Hydraulic model of each site constructed
Stage 2: catchment studies

Continuous monitoring of river level and water quality parameters

- DO, temp, conductivity, pH and turbidity
Stage 2: catchment studies

Seasonal (3 month) monitoring of a range of variables:

Hydraulic
- water level
- discharge

Water Quality
- DO, temp, conductivity, pH, turbidity, TN and TP

Geomorphic
- thalweg location
- sediment composition
- leaf litter and wood cover
- photomonitoring

Flora
- growth form structure of riparian and aquatic vegetation
- algal biomass and composition
- photomonitoring

Fauna
- macroinvertebrate assemblage structure
- fish assemblage structure
- food web structure (stable isotopes)

Ecosystem processes
- organic matter breakdown
- benthic metabolism
Stage 2: catchment studies

Flow manipulation experiment to look at rapid-response variables:

- fine particle movement
- benthic metabolism
- food web structure
Stage 3: developing tools and recommendations

- Develop a Decision Support System to explore flow scenarios in rivers of similar hydrology.
- Suite of potential flow-related indicators.
- Independent review by Scientific Panel.

A transparent means of recommending environmental flows and allocating water from the natural flow regime.
Acknowledgements

Water Resources (DPIW) technical assistance:

• John Gooderham, Shivaraj Gurung, Danielle Hardie, Scott Hardie, David Horner, Tom Krasnicki, David Spiers

Contributing consultancies:

• Freshwater Systems, Technical Advice on Water, Glen McPherson Consultancy

Scientific Review Panel:

• Angela Arthington, Margaret Brock, Peter M. Davies, Graham Harris, Sam Lake, Helen Locher, Paul Reich, Peter Scanes, John Whittington